Positive periodic solutions for neutral functional differential systems
نویسندگان
چکیده
منابع مشابه
Existence of Positive Periodic Solutions for Neutral Functional Differential Equations
We find sufficient conditions for the existence of positive periodic solutions of two kinds of neutral differential equations. Using Krasnoselskii’s fixed-point theorem in cones, we obtain results that extend and improve previous results. These results are useful mostly when applied to neutral equations with delay in bio-mathematics.
متن کاملPositive periodic solutions of functional differential equations
We consider the existence, multiplicity and nonexistence of positive o-periodic solutions for the periodic equation x0ðtÞ 1⁄4 aðtÞgðxÞxðtÞ lbðtÞf ðxðt tðtÞÞÞ; where a; bACðR; 1⁄20;NÞÞ are o-periodic, Ro 0 aðtÞ dt40; Ro 0 bðtÞ dt40; f ; gACð1⁄20;NÞ; 1⁄20;NÞÞ; and f ðuÞ40 for u40; gðxÞ is bounded, tðtÞ is a continuous o-periodic function. Define f0 1⁄4 limu-0þ f ðuÞ u ; fN 1⁄4 limu-N f ðuÞ u ; i0...
متن کاملPositive Periodic Solutions for Neutral Functional Difference Equations
In this paper, we apply fixed point theorem in a cone to obtain sufficient conditions for the existence of single and multiple positive periodic solutions for a class of neutral functional difference equation. AMS Subject Classifications: 39A10, 39A11.
متن کاملPeriodic Solutions for Some Partial Neutral Functional Differential Equations
In this work, we study the existence of periodic solutions for partial neutral functional differential equation. We assume that the linear part is not necessarily densely defined and satisfies the Hille-Yosida condition. In the nonhomogeneous linear case, we prove that the existence of a bounded solution on R+ implies the existence of a periodic solution. In nonlinear case, we use the concept o...
متن کاملPositive Periodic Solutions In Neutral Nonlinear Differential Equations
We use Krasnoselskii’s fixed point theorem to show that the nonlinear neutral differential equation with delay d dt [x(t)− ax(t− τ)] = r(t)x(t)− f(t, x(t− τ)) has a positive periodic solution. An example will be provided as an application to our theorems. AMS Subject Classifications: 34K20, 45J05, 45D05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2017
ISSN: 0716-0917
DOI: 10.4067/s0716-09172017000300423